B. E. Common to all Programmes Outcome Based Education (OBE) and Choice Based Credit System (CBCS) SEMESTER - III

ADDITIONAL MATHEMATICS – I

(Mandatory Learning Course: Common to All Programmes)

(A Bridge course for Lateral Entry students under Diploma quota to BE/B. Tech. programmes)

Course Code	18MATDIP31	CIE Marks	40
Teaching Hours/Week (L:T:P)	(2:2:0)	SEE Marks	60
Credits	0	Exam Hours	03

Course Learning Objectives:

- To provide basic concepts of complex trigonometry, vector algebra, differential and integral calculus.
- To provide an insight into vector differentiation and first order ODE's.

Module-1

Complex Trigonometry: Complex Numbers: Definitions and properties. Modulus and amplitude of a complex number, Argand's diagram, De-Moivre's theorem (without proof).

Vector Algebra: Scalar and vectors. Addition and subtraction and multiplication of vectors- Dot and Cross products, problems.

Module-2

Differential Calculus: Review of successive differentiation-illustrative examples. Maclaurin's series expansions-Illustrative examples. Partial Differentiation: Euler's theorem-problems on first order derivatives only. Total derivatives-differentiation of composite functions. Jacobians of order two-Problems.

Module-3

Vector Differentiation: Differentiation of vector functions. Velocity and acceleration of a particle moving on a space curve. Scalar and vector point functions. Gradient, Divergence, Curl-simple problems. Solenoidal and irrotational vector fields-Problems.

Module-4

Integral Calculus: Review of elementary integral calculus. Reduction formulae for sinⁿx, cosⁿx (with proof) and sin^mxcosⁿx (without proof) and evaluation of these with standard limits-Examples. Double and triple integrals-Simple examples.

Module-5

Ordinary differential equations (ODE's. Introduction-solutions of first order and first-degree differential equations: exact, linear differential equations. Equations reducible to exact and Bernoulli's equation.

Course Outcomes: At the end of the course the student will be able to:

- CO1: Apply concepts of complex numbers and vector algebra to analyze the problems arising in related area.
- CO2: Use derivatives and partial derivatives to calculate rate of change of multivariate functions.
- CO3: Analyze position, velocity and acceleration in two and three dimensions of vector valued functions.
- CO4: Learn techniques of integration including the evaluation of double and triple integrals.
- CO5: Identify and solve first order ordinary differential equations.

Question paper pattern:

- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub- questions) from each module.
- Each full question will have sub- question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

Sl		Name of the		
No	Title of the Book	Author/s	Name of the	Edition and Year

	٩	

			Publisher			
Textbook						
1	Higher Engineering Mathematics	B. S. Grewal	Khanna Publishers	43 rd Edition, 2015		
Refere	Reference Books					
1	Advanced Engineering Mathematics	E. Kreyszig	John Wiley & Sons	10 th Edition, 2015		
2	Engineering Mathematics	N. P. Bali and	Laxmi Publishers	7th Edition, 2007		
		Manish Goyal				
3	Engineering Mathematics Vol. I	Rohit Khurana	Cengage Learning	1 st Edition, 2015		

B. E. Common to all Programmes Choice Paged Credit System (CPCS) and Outcome Paged Education (OPE)						
Choice Based Credit System (CBCS) and Outcome Based Education (OBE) SEMESTER - III						
TRANSFORM CALCULUS, FOURIER SERIES AND NUMERICAL TECHNIQUES						
Course Code	18MAT31	CIE Marks	40			
Teaching Hours/Week (L: T:P)	(2:2:0)	SEE Marks	60			
Credits	03	Exam Hours	03			
• To have an insight into Fourie and Z-transforms.	• To develop the proficiency in variational calculus and solving ODE's arising in engineering					
Module-1						
Laplace Transform: Definition and transforms of Periodic functions (state Inverse Laplace Transform: Defini- transforms (without Proof) and problem Module-2	ment only) and unit-step function ition and problems, Convolutions. Solution of linear differentia	on – problems. on theorem to find that equations using Lap	he inverse Laplace lace transforms.			
Fourier Series : Periodic functions, D arbitrary period. Half range Fourier se			ons period 2π and			
Module-3						
Module-4 Numerical Solutions of Ordinary Di Numerical solution of ODE's of first of Runge -Kutta method of fourth order derivations of formulae)-Problems.	fferential Equations(ODE's): order and first degree- Taylor's	series method, Modifi				
Module-5						
Numerical Solution of Second Ord	er ODE's Runge-Kutta meth	od and Milne's pred	ictor and corrector			
method. (No derivations of formulae).	CI ODE 3. Runge-Rutta meth	ioù and winne s preu	letor and corrector			
Calculus of Variations: Variation Geodesics, hanging chain, problems.	of function and functional, v	variational problems,	Euler's equation,			
 arising in network analysis, co. CO2: Demonstrate Fourier set system communications, digit. CO3: Make use of Fourier train wave and heat propagation, CO4: Solve first and second using single step and multistep CO5:Determine the externals arising in dynamics of rigid box 	and inverse Laplace transform introl systems and other fields of ries to study the behaviour of pe al signal processing and field the nsform and Z-transform to illus signals and systems. d order ordinary differential ec o numerical methods. of functionals using calculus odies and vibrational analysis.	in solving differentia f engineering. eriodic functions and t eory. strate discrete/continue quations arising in eng of variations and sol	heir applications in ous function arising gineering problems			
• The question paper will have ter • Each full question will be for 20		arks.				
Each full question will be for 20There will be two full questions		mactions) from each -	odule			
- There will be two full questions	(with a maximum of four sub- C	rucouono) nom cach n	iouure.			

• Each full question will have sub- question covering all the topics under a module.

• The students will have to answer five full questions, selecting one full question from each module.

Sl. No.	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
Textb	ooks			
1	AdvancedEngineeringMathematics	E. Kreyszig	John Wiley & Sons	10 th Edition, 2016
2	Higher Engineering Mathematics	B. S. Grewal	Khanna Publishers	44 th Edition, 2017
3	Engineering Mathematics	Srimanta Pal et al	Oxford University Press	3 rd Edition, 2016
Refer	ence Books			
1	AdvancedEngineeringMathematics	C. Ray Wylie, Louis C. Barrett	McGraw-Hill Book Co	6 th Edition, 1995
2	Introductory Methods of Numerical Analysis	S.S.Sastry	Prentice Hall of India	4 th Edition 2010
3	Higher Engineering Mathematics	B.V. Ramana	McGraw-Hill	11 th Edition,2010
4	A Textbook of Engineering Mathematics	N.P.Bali and Manish Goyal	Laxmi Publications	6 th Edition, 2014
5	Advanced Engineering Mathematics	Chandrika Prasad and Reena Garg	Khanna Publishing,	2018
Web l	links and Video Lectures:			
2. http	p://nptel.ac.in/courses.php?disciplineII p://www.class-central.com/subject/may p://academicearth.org/			

http://academicearth.org/
 VTU EDUSAT PROGRAMME - 20

	B. E. Common to all Pro	8			
Choice Based Cree	lit System (CBCS) and Ou SEMESTER - 1	tcome Based Education (O V	BE)		
COMPLEX ANALYSIS, PROBABILITY AND STATISTICAL METHODS					
Course Code	18MAT41	CIE Marks	40		
Teaching Hours/Week (L:T:P)	(2:2:0)	SEE Marks	60		
Credits	03	Exam Hours	03		
 arising in potential theory, To develop probability di distribution occurring in di 	quantum mechanics, heat co stribution of discrete, cont	ables, conformal mapping a onduction and field theory. inuous random variables an gn engineering and microwa	nd joint probability		
Module-1	Deriver of founding of	· · · · · · · · 1 · · · · · · · · · · 1 · 1 · · · · 1 · · · ·	: 		
Calculus of complex functions differentiability. Analytic function consequences. Construction of analytic function	ons: Cauchy-Riemann eq	uations in Cartesian and			
Module-2					
Conformal transformations: Intro $\frac{1}{z}$, $(z \neq 0)$. Bilinear transformations	- Problems.				
Complex integration: Line integra and problems.	ll of a complex function-Cat	ichy's theorem and Cauchy	s integral formula		
Module-3 Probability Distributions: Review					
probability mass/density functions derivation for mean and standard de Module-4			ions- problems (No		
Statistical Methods: Correlation an -problems. Regression analysis- lin Curve Fitting: Curve fitting by the		s coefficient of correlation a	nd rank correlation		
	e method of least squares- fit	ting the curves of the form-			
$y = ax + b$, $y = ax^{b}andy = ax^{2}$	-	ting the curves of the form-			
	-	ting the curves of the form-			
Module-5 Joint probability distribution: Jo and covariance.	+ bx + c.	for two discrete random va	•		
Module-5 Joint probability distribution: Jo and covariance. Sampling Theory: Introduction to hypothesis for means, student's t-o	+ bx + c. bint Probability distribution b sampling distributions, sta distribution, Chi-square distribution	for two discrete random va ndard error, Type-I and Typ tribution as a test of good	be-II errors. Test of		
Module-5 Joint probability distribution: Jo and covariance. Sampling Theory: Introduction to hypothesis for means, student's t-o Course Outcomes: At the end of the	+ bx + c. bint Probability distribution b sampling distributions, state distribution, Chi-square distribution, Chi-square distribution and complex point for the student will be be course the student will be	for two discrete random va ndard error, Type-I and Typ tribution as a test of good	be-II errors. Test of ness of fit.		
Module-5 Joint probability distribution: Jo and covariance. Sampling Theory: Introduction to hypothesis for means, student's t-o Course Outcomes: At the end of th Use the concepts of analytic electromagnetic field theory Utilize conformal transfor visualization and image pro-	+ bx + c. bint Probability distribution b sampling distributions, state distribution, Chi-square distribution, Chi-square distribution, Chi-square distribution the student will be the course the student will be the student will be the course the student will be the student will be the course the student will be the student will be the student will be the student will be the student will be student will b	for two discrete random vandard error, Type-I and Typetribution as a test of good able to: tentials to solve the problem ral arising in aerofoil theor	be-II errors. Test of ness of fit. Is arising in y, fluid flow		
 Module-5 Joint probability distribution: Joand covariance. Sampling Theory: Introduction to hypothesis for means, student's t-ocourse Outcomes: At the end of the Use the concepts of analytic electromagnetic field theory. Utilize conformal transfor visualization and image procession. Apply discrete and continue engineering field. 	+ bx + c. bint Probability distribution b sampling distributions, state distribution, Chi-square distribution, Chi-square distribution, Chi-square distributions the course the student will be ic function and complex port y. mation and complex integration probability distributions	for two discrete random van ndard error, Type-I and Typ atribution as a test of good able to: tentials to solve the problem ral arising in aerofoil theor in analyzing the probability	be-II errors. Test of ness of fit. as arising in y, fluid flow y models arising in		
 Module-5 Joint probability distribution: Joand covariance. Sampling Theory: Introduction to hypothesis for means, student's t-ocourse Outcomes: At the end of the Use the concepts of analytic electromagnetic field theory. Utilize conformal transforred visualization and image procession. Apply discrete and continue engineering field. Make use of the correlation statistical data. 	+ bx + c. bint Probability distribution o sampling distributions, sta distribution, Chi-square distribution, Chi-square distribution, chi-square distributions the course the student will be ic function and complex poly. mation and complex integration y. mation and complex integration probability distributions and regression analysis to the	for two discrete random van ndard error, Type-I and Typ atribution as a test of good able to: tentials to solve the problem ral arising in aerofoil theor in analyzing the probability fit a suitable mathematical m	pe-II errors. Test of mess of fit. as arising in y, fluid flow y models arising in model for the		
 Module-5 Joint probability distribution: Joand covariance. Sampling Theory: Introduction to hypothesis for means, student's t-ocourse Outcomes: At the end of the Use the concepts of analytic electromagnetic field theory. Utilize conformal transfor visualization and image provisualization and image provisualization and image provisualization field. Make use of the correlation statistical data. Construct joint probability 	+ bx + c. bint Probability distribution o sampling distributions, sta distribution, Chi-square distribution, Chi-square distribution, chi-square distributions the course the student will be ic function and complex poly. mation and complex integration y. mation and complex integration probability distributions and regression analysis to the	for two discrete random van ndard error, Type-I and Typ atribution as a test of good able to: tentials to solve the problem ral arising in aerofoil theor in analyzing the probability	pe-II errors. Test of mess of fit. as arising in y, fluid flow y models arising in model for the		
 Module-5 Joint probability distribution: Joand covariance. Sampling Theory: Introduction to hypothesis for means, student's t-Course Outcomes: At the end of the Use the concepts of analytic electromagnetic field theory. Utilize conformal transforred visualization and image procession. Apply discrete and continue engineering field. Make use of the correlation statistical data. Construct joint probability 	+ bx + c. bint Probability distribution b sampling distributions, state distribution, Chi-square distribution, Chi-square distribution, Chi-square distributions the course the student will be ic function and complex poly y. mation and complex integration y. mation and complex integration by probability distributions and regression analysis to the distributions and demonstration	for two discrete random van ndard error, Type-I and Typ atribution as a test of good able to: tentials to solve the problem ral arising in aerofoil theor in analyzing the probability fit a suitable mathematical m ate the validity of testing the	pe-II errors. Test of mess of fit. as arising in y, fluid flow y models arising in model for the		
 Module-5 Joint probability distribution: Joand covariance. Sampling Theory: Introduction to hypothesis for means, student's t-ocourse Outcomes: At the end of the Use the concepts of analytic electromagnetic field theory. Utilize conformal transfor visualization and image provisualization and image provisualization and image provisualization field. Make use of the correlation statistical data. Construct joint probability Question paper pattern: The question paper will have 	+ bx + c. bint Probability distribution o sampling distributions, sta distribution, Chi-square dis- the course the student will be ic function and complex poly y. mation and complex integra ocessing. ous probability distributions and regression analysis to the distributions and demonstra- ten full questions carrying e	for two discrete random van ndard error, Type-I and Typ atribution as a test of good able to: tentials to solve the problem ral arising in aerofoil theor in analyzing the probability fit a suitable mathematical m ate the validity of testing the	pe-II errors. Test of mess of fit. as arising in y, fluid flow y models arising in model for the		
 Module-5 Joint probability distribution: Joand covariance. Sampling Theory: Introduction to hypothesis for means, student's t-Course Outcomes: At the end of the Use the concepts of analytic electromagnetic field theory. Utilize conformal transforred visualization and image processes. Apply discrete and continue engineering field. Make use of the correlation statistical data. Construct joint probability 	+ bx + c. bint Probability distribution b sampling distributions, sta distribution, Chi-square distribution, Chi-square distributions, chi-square distributions the course the student will be ic function and complex porty, mation and complex integration y. mation and complex integration ous probability distributions and regression analysis to the distributions and demonstration ten full questions carrying effects 20 marks.	for two discrete random values indard error, Type-I and Type tribution as a test of goods able to: tentials to solve the problem ral arising in aerofoil theor in analyzing the probability fit a suitable mathematical m ate the validity of testing the equal marks.	be-II errors. Test of hess of fit. as arising in y, fluid flow w models arising in hodel for the hypothesis.		

Sl. No.	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
Textboo	bks			•
1	Advanced Engineering Mathematics	E. Kreyszig	John Wiley & Sons	10 th Edition,2016
2	Higher Engineering Mathematics	B. S. Grewal	Khanna Publishers	44 th Edition, 2017
3	Engineering Mathematics	Srimanta Pal et al	Oxford University Press	3 rd Edition,2016
Referen	ce Books		•	
1	Advanced Engineering Mathematics	C. Ray Wylie, Louis C.Barrett	McGraw-Hill	6 th Edition 1995
2	Introductory Methods of Numerical Analysis	S.S.Sastry	Prentice Hall of India	4 th Edition 2010
3	Higher Engineering Mathematics	B. V. Ramana	McGraw-Hill	11 th Edition,2010
4	A Text Book of Engineering Mathematics	N. P. Bali and Manish Goyal	Laxmi Publications	2014
5	Advanced Engineering Mathematics	Chandrika Prasad and Reena Garg	Khanna Publishing,	2018
 http:// http:// http:// http:// 	ks and Video Lectures: /nptel.ac.in/courses.php?disciplineI /www.class-central.com/subject/ma /academicearth.org/ FDUSAT PROGRAMME - 20			

4. VTU EDUSAT PROGRAMME - 20

B. E. Common to all Programmes Outcome Based Education (OBE) and Choice Based Credit System (CBCS) SEMESTER - IV

ADDITIONAL MATHEMATICS – II

(Mandatory Learning Course: Common to All Programmes)

(A Bridge course for Lateral Entry students under Diploma quota to BE/B. Tech. programmes)

Course Code	18MATDIP41	CIE Marks	40
Teaching Hours/Week (L:T:P)	(2:1:0)	SEE Marks	60
Credits	0	Exam Hours	03

Course Learning Objectives:

- To provide essential concepts of linear algebra, second & higher order differential equations along with methods to solve them.
- To provide an insight into elementary probability theory and numerical methods.

Module-1

Linear Algebra: Introduction - rank of matrix by elementary row operations - Echelon form. Consistency of system of linear equations - Gauss elimination method. Eigen values and Eigen vectors of a square matrix. Problems.

Module-2

Numerical Methods: Finite differences. Interpolation/extrapolation using Newton's forward and backward difference formulae (Statements only)-problems. Solution of polynomial and transcendental equations – Newton-Raphson and Regula-Falsi methods (only formulae)- Illustrative examples. Numerical integration: Simpson's one third rule and Weddle's rule (without proof) Problems.

Module-3

Higher order ODE's: Linear differential equations of second and higher order equations with constant coefficients. Homogeneous /non-homogeneous equations. Inverse differential operators.[*Particular Integral restricted to R*(x)= e^{ax} , sin ax /cos ax for $_f(D)_y = R(x)$.]

Module-4

Partial Differential Equations (PDE's):- Formation of PDE's by elimination of arbitrary constants and functions. Solution of non-homogeneous PDE by direct integration. Homogeneous PDEs involving derivative with respect to one independent variable only.

Module-5

Probability: Introduction. Sample space and events. Axioms of probability. Addition & multiplication theorems. Conditional probability, Bayes's theorem, problems.

Course Outcomes: At the end of the course the student will be able to:

CO1: Solve systems of linear equations using matrix algebra.

CO2: Apply the knowledge of numerical methods in modelling and solving engineering problems.

CO3: Make use of analytical methods to solve higher order differential equations.

CO4: Classify partial differential equations and solve them by exact methods.

CO5: Apply elementary probability theory and solve related problems.

Question paper pattern:

- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub- questions) from each module.
- Each full question will have sub- question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
Textbook						
Higher Engineering Mathematics	B.S. Grewal	Khanna Publishers	43 rd Edition, 2015			
Reference Books						
Advanced Engineering Mathematics	E. Kreyszig	John Wiley & Sons	10 th Edition, 2015			
Engineering Mathematics	N. P. Bali and Manish Goyal	Laxmi Publishers	7th Edition, 2007			
Engineering Mathematics Vol. I	Rohit Khurana	Cengage Learning	1 st Edition, 2015			
	book Higher Engineering Mathematics rence Books Advanced Engineering Mathematics Engineering Mathematics	Title of the BookAuthor/sbookHigher Engineering MathematicsB.S. Grewalrence BooksAdvanced Engineering MathematicsE. KreyszigEngineering MathematicsN. P. Bali and Manish Goyal	Title of the BookAuthor/sName of the PublisherbookHigher Engineering MathematicsB.S. GrewalKhanna Publishersrence BooksAdvanced Engineering MathematicsE. KreyszigJohn Wiley & SonsEngineering MathematicsN. P. Bali and Manish GoyalLaxmi Publishers			