I Semester

CALCULUS AND DIFFERENTIAL EQUATIONS			
Course Code	21MAT11	CIE Marks	50
Teaching Hours/Week (L:T:P:S)	2:2:0:0	SEE Marks	50
Total Hours of Pedagogy	40	Total Marks	100
Credits	03	Exam Hours	03
Course objectives: The goal of the course Calculus and Differential Equations - 21MAT11 is			

- To facilitate the students with a concrete foundation of differential calculus
- To solve the first and higher-order ordinary differential equations enabling them to acquire the knowledge of these mathematical tools.
- To develop the knowledge of matrices and linear algebra in a comprehensive manner.

Teaching-Learning Process (General Instructions):

These are sample Strategies, which teachers can use to accelerate the attainment of the various course outcomes.

- 1. In addition to the traditional lecture method, different types of innovative teaching methods may be adopted so that the delivered lessons shall develop students' theoretical and applied mathematical skills.
- 2. State the need for Mathematics with Engineering Studies and Provide real-life examples.
- 3. Support and guide the students for self-study.
- 4. You will also be responsible for assigning homework, grading assignments and quizzes, and documenting students' progress.
- 5. Encourage the students for group learning to improve their creative and analytical skills.
- 6. Show short related video lectures in the following ways:
 - As an introduction to new topics (pre-lecture activity).
 - As a revision of topics (post-lecture activity).
 - As additional examples (post-lecture activity).
 - As an additional material of challenging topics (pre-and post-lecture activity).
 - As a model solution of some exercises (post-lecture activity).

Module-1: Differential Calculus - 1

Polar curves, angle between the radius vector and the tangent, angle between two curves. Pedal equations. Curvature and Radius of curvature - Cartesian, Parametric, Polar and Pedal forms. Problems.

Self-study: Center and circle of curvature, evolutes and involutes.

(RBT Levels: L1, L2 and L3)

Teaching-Learning Process	Chalk and talk method / Power Point Presentation
	Module-2: Differential Calculus - 2

Taylor's and Maclaurin's series expansion for one variable (Statement only) – problems. Indeterminate forms-L'Hospital's rule. Partial differentiation, total derivative-differentiation of composite functions. Jacobian and problems. Maxima and minima for a function of two variables. Problems.

Self-study: Euler's Theorem and problems. Method of Lagrange undetermined multipliers with single constraint.

(RBT Levels: L1, L2 and L3)

Teaching-Learning Process	Chalk and talk method / PowerPoint Presentation

Module-3: Ordinary Differential Equations (ODE's) of first order

Linear and Bernoulli's differential equations. Exact and reducible to exact differential equations. Applications of ODE's-Orthogonal trajectories, Newton's law of cooling.

Nonlinear differential equations: Introduction to general and singular solutions; Solvable for p only; Clairaut's equations, reducible to Clairaut's equations. Problems.

Self-Study: Applications of ODE's: L-R circuits. Solvable for x and y.

(RBT Levels: L1, L2 and L3)

Teaching-Learning Process	Chalk and talk method / PowerPoint Presentation

Module-4: Ordinary Differential Equations of higher order

Higher-order linear ODE's with constant coefficients - Inverse differential operator, method of variation of parameters, Cauchy's and Legendre homogeneous differential equations. Problems. **Self-Study:** Applications to oscillations of a spring and L-C-R circuits.

(RBT Levels: L1, L2 and L3)

Teaching-Learning ProcessChalk and talk method / Power Point Presentation

Module-5: Linear Algebra

Elementary row transformation of a matrix, Rank of a matrix. Consistency and Solution of system of linear equations; Gauss-elimination method, Gauss-Jordan method and Approximate solution by Gauss-Seidel method. Eigenvalues and Eigenvectors-Rayleigh's power method to find the dominant Eigenvalue and Eigenvector.

Self-Study: Solution of system of equations by Gauss-Jacobi iterative method. Inverse of a square matrix by Cayley- Hamilton theorem.

(RBT Levels: L1, L2 and L3).

Teaching-Learning Process	Chalk and talk method / Power Point Presentation

Course outcomes (Course Skills Set)

After successfully completing the course, the student will be able to understand the topics.

- Apply the knowledge of calculus to solve problems related to polar curves and its applications in determining the bentness of a curve.
- Learn the notion of partial differentiation to calculate rate of change of multivariate functions and solve problems related to composite functions and Jacobian.
- Solve first-order linear/nonlinear ordinary differential equations analytically using standard methods.
- Demonstrate various models through higher order differential equations and solve such linear ordinary differential equations.
- Test the consistency of a system of linear equations and to solve them by direct and iterative methods.

Assessment Details (both CIE and SEE)
Continuous Internal Evaluation
TO marks weightage has to be given for the Self-Study component (via assignment/seminar/test).
Semester End Examination:
3.
Suggested Learning Resources:
Text Books
1 B.S. Grewal : "Higher Engineering Mathematics" Khanna nublishers 44th Ed 2018
2 F Kreyszig: "Advanced Engineering Mathematics" John Wiley & Sons 10th Ed (Reprint) 2016
2. L. MCyszig. Advanced Engineering Mathematics , John Whey & Johns, 10th Ed. (Reprint), 2010.
Reference Books
1. V. Ramana: "Higher Engineering Mathematics" McGraw-Hill Education, 11 th Ed.
2. Srimanta Pal & Subodh C. Bhunia: "Engineering Mathematics" Oxford University Press, 3 rd Reprint,
2016.
3. N.P Bali and Manish Goyal: "A textbook of Engineering Mathematics" Laxmi Publications, Latest
edition.
4. C. Ray Wylie, Louis C. Barrett: "Advanced Engineering Mathematics" McGraw – Hill Book
Co.Newvork, Latest ed.
5. Gupta C.B. Sing S.R and Mukesh Kumar: "Engineering Mathematic for Semester I and II". Mc-
Graw Hill Education (India) Pyt. Ltd 2015.
6 H.K. Dass and Fr. Rainish Verma: "Higher Engineering Mathematics" S Chand Publication (2014)
7 James Stewart: "Calculus" Congage nublications 7th edition 4th Reprint 2019
7. Janes Stewart. Calculus Congage publications, 7* Cultion, 4* Reprint 2017.
Web links and Video Lectures (e-Resources):
 http://.ac.in/courses.php?disciplineID=111
 http://www.class-central.com/subject/math(MOOCs)
 http://academicearth.org/
<u>Intp.//ataucinictartitorg/</u> VTILo Shilahana Drogram
• VIUEDUSAI Program

Activity-Based Learning (Suggested Activities in Class)/ Practical Based learning

- Quizzes
- Assignments
- Seminars

II Semester

Course Code 21MAT21 CIE Marks 50 Teaching Hours/Week (L:T:P:S) 2:2:0:0 SEE Marks 50 Total Hours of Pedagogy 40 Total Marks 100 Credits 03 Exam Hours 03 Course objectives: The goal of the course Advanced Calculus and Numerical Methods - 21MAT21 is, • To facilitate the students with a concrete foundation of otector calculus, partial differential equations, and numerical methods enabling them to acquire the knowledge of these mathematical tools. Teaching-Learning Process (General Instructions): These are sample Strategies; which teachers can use to accelerate the attainment of the various course outcomes. 1. In addition to the traditional lecture method, different types of innovative teaching methods may be adopted so that the delivered lessons shall develop students' theoretical and applied mathematical skills. 2. State the need for Mathematics with Engineering Studies and Provide real-life examples 3. Support and guide the students for self-study. 4. You will also be responsible for assigning homework, grading assignments and quizzes, and documenting students' progress 5. Encourage the students for group learning to improve their creative and analytical skills 6. Show short related Video lectures in the following ways: 6. As an introduction to new topics (pre-lecture activity). 6.	ADVANCED	CALCULUS AND NUMERICAL	METHODS	
Teaching Hours/Week (LT:P:S) 2:2:0:0 SEE Marks 50 Total Hours of Pedagogy 40 Total Marks 100 Credits 03 Exam Hours 03 Course objectives: The goal of the course Advanced Calculus and Numerical Methods - 21MAT21 is, To facilitate the students with a concrete foundation of vector calculus, partial differential equations, and numerical methods enabling them to acquire the knowledge of these mathematical tools. Teaching-Learning Process (General Instructions): These are sample Strategies; which teachers can use to accelerate the attainment of the various course outcomes. 1 In addition to the traditional lecture method, different types of innovative teaching methods may be adopted so that the delivered lessons shall develop students' theoretical and applied mathematical skills. 3. Support and guide the students for self-study. 4. You will also be responsible for assigning homework, grading assignments and quizzes, and documenting students' progress 5. Encourage the students for group learning to improve their creative and analytical skills 6. Show short related video lectures in the following ways: • As an introduction to new topics (pre-lecture activity). As a additional activity of value activity). • As a model solution of sole lecture activity). As a andel solution of double and triple integrals, evaluation of double integrals by change of order of ini	Course Code	21MAT21	CIE Marks	50
Total Hours of Pedagogy 40 Total Marks 100 Credits 03 Exam Hours 03 Course objectives: The goal of the course Advanced Calculus and Numerical Methods - 21MAT21 is, To facilitate the students with a concrete foundation of integral calculus. To facilitate the students with a concrete foundation of vector calculus, partial differential equations, and numerical methods enabling them to acquire the knowledge of these mathematical tools. Teaching-Learning Process (General Instructions): These are sample Strategies; which teachers can use to accelerate the attainment of the various course outcomes. 1. In addition to the traditional lecture method, different types of innovative teaching methods may be adopted so that the delivered lessons shall develop students' theoretical and applied mathematical skills. 2. State the need for Mathematics with Engineering Studies and Provide real-life examples 3. Support and guide the students for self-study. 4. You will also be responsible for assigning homework, grading assignments and quizzes, and documenting students' progrees 5. Encourage the students (post-lecture activity). • As a nitroduction to new topics (pre-lecture activity). • As a nitroduction to new topics (post-lecture activity). • As an additional examples (post-lecture activity). • As an additional material of challenging topics (pre and post-lecture activity). • As an additional material of challenging topics (pre and p	Teaching Hours/Week (L:T:P:S)	2:2:0:0	SEE Marks	50
Credits 03 Exam Hours 03 Course objectives: The goal of the course Advanced Calculus and Numerical Methods - 21MAT21 is, • To facilitate the students with a concrete foundation of integral calculus. • • To facilitate the students with a concrete foundation of vector calculus, partial differential equations, and numerical methods enabling them to acquire the knowledge of these mathematical tools. Teaching-Learning Process (General Instructions): • These are sample Strategies; which teachers can use to accelerate the attainment of the various course outcomes. 1. In addition to the traditional lecture method, different types of innovative teaching methods may be adopted so that the delivered lessons shall develop students' theoretical and applied mathematical skills. 2. State the need for Mathematics with Engineering Studies and Provide real-life examples 3. Support and guide the students for self-study. 4. You will also be responsible for assigning homework, grading assignments and quizzes, and documenting students' progress 5. Encourage the students for group learning to improve their creative and analytical skills 6. Show short related video lectures in the following ways: • As a introduction to new topics (pre-lecture activity). • As an additional material of challenging topics (pre and post-lecture activity). • As a model solution of some exercises (post-lecture activity) • Module-1: Integral Calculus	Total Hours of Pedagogy	40	Total Marks	100
Course objectives: The goal of the course Advanced Calculus and Numerical Methods - 21MAT21 is, • To facilitate the students with a concrete foundation of integral calculus. • To facilitate the students with a concrete foundation of vector calculus, partial differential equations, and numerical methods enabling them to acquire the knowledge of these mathematical tools. Teaching-Learning Process (General Instructions): These are sample Strategies; which teachers can use to accelerate the attainment of the various course outcomes. 1. In addition to the traditional lecture method, different types of innovative teaching methods may be adopted so that the delivered lessons shall develop students' theoretical and applied mathematical skills. 2. State the need for Mathematics with Engineering Studies and Provide real-life examples 3. Support and guide the students for self-study. 4. You will also be responsible for assigning homework, grading assignments and quizzes, and documenting students' progress 5. Encourage the students (post-lecture activity). • As an introduction to new topics (pre-lecture activity). • As a newision of topics (post-lecture activity). • As a model solution of some exercises (post-lecture activity). • As a model solution of some exercises (post-lecture activity). • As a newision of topics (pre-lecture activity). • As a model solution of some exercises (post-lecture activity). • As a model solution of some exercises (post-lecture	Credits	03	Exam Hours	03
 To facilitate the students with a concrete foundation of integral calculus. To facilitate the students with a concrete foundation of vector calculus, partial differential equations, and numerical methods enabling them to acquire the knowledge of these mathematical tools. Teaching-Learning Process (General Instructions): These are sample Strategies; which teachers can use to accelerate the attainment of the various course outcomes. In addition to the traditional lecture method, different types of innovative teaching methods may be adopted so that the deliverel lessons shall develop students' theoretical and applied mathematical skills. State the need for Mathematics with Engineering Studies and Provide real-life examples Support and guide the students for self-study. You will also be responsible for assigning homework, grading assignments and quizzes, and documenting students' progress Encourage the students for group learning to improve their creative and analytical skills Show short related video lectures in the following ways: As an introduction to new topics (pre-lecture activity). As a additional material of challenging topics (pre and post-lecture activity). As an diditional material of challenging topics (pre and post-lecture activity). As a model solution of some exercises (post-lecture activity). As a model solution of double and triple integrals, evaluation of double integrals by change of order of integrals. Evaluation of double and triple integrals, evaluation of double integrals by change of order of integrals. Definitions, properties, the relation between Beta and Gamma functions. Problems. Preaching-Learning Process Chalk and talk method / PowerPoint Presentation Vector Dif	Course objectives: The goal of the c	ourse Advanced Calculus and Nun	nerical Methods -	21MAT21 is,
 To facilitate the students with a concrete foundation of vector calculus, partial differential equations, and numerical methods enabling them to acquire the knowledge of these mathematical tools. Teaching-Learning Process (General Instructions): These are sample Strategies; which teachers can use to accelerate the attainment of the various course outcomes. In addition to the traditional lecture method, different types of innovative teaching methods may be adopted so that the delivered lessons shall develop students' theoretical and applied mathematical skills. State the need for Mathematics with Engineering Studies and Provide real-life examples Support and guide the students for self-study. You will also be responsible for assigning homework, grading assignments and quizzes, and documenting students' progress Encourage the students for group learning to improve their creative and analytical skills Show short related video lectures in the following ways: As an introduction to new topics (pre-lecture activity). As a additional examples (post-lecture activity). As an diditional examples (post-lecture activity). As an diditional material of challenging topics (pre and post-lecture activity). As a model solution of some exercises (post-lecture activity). As a model solution of double and triple integrals, evaluation of double integrals by change of order of integrals. Definitions, properties, the relation between Beta and Gamma functions. Problems. Self-Study: Centre of gravity. Teaching-Learning Process Chalk and talk method / PowerPoint Presentation Vector Differentiation: Scelar and vector fields. Gradient, directional derivative, curl and divergence -physical interpretation, ala microationa	• To facilitate the students wit	h a concrete foundation of integra	l calculus.	
equations, and numerical methods enabling them to acquire the knowledge of these mathematical tools. Teaching-Learning Process (General Instructions): These are sample Strategies; which teachers can use to accelerate the attainment of the various course outcomes. 1. In addition to the traditional lecture method, different types of innovative teaching methods may be adopted so that the delivered lessons shall develop students' theoretical and applied mathematical skills. 2. State the need for Mathematics with Engineering Studies and Provide real-life examples 3. Support and guide the students for self-study. 4. You will also be responsible for assigning homework, grading assignments and quizzes, and documenting students' progress 5. Encourage the students for group learning to improve their creative and analytical skills 6. Show short related video lectures in the following ways: ● As an introduction to new topics (pre-lecture activity). ● As a revision of topics (post-lecture activity). ● As a model solution of some exercises (post-lecture activity). ● As a model solution of double and triple integral calculus Multiple Integrals: Evaluation of double and triple integrals, evaluation of double integrals by change of order of integration, changing into polar coordinates. Applications to find Area and Volume by a double integral. Problems. Belf-Study: Centre of gravity. Teaching-Learning Process Chalk and talk method / PowerPoint Presentation	• To facilitate the students with	h a concrete foundation of vector o	calculus, partial di	ifferential
mathematical tools. Teaching-Learning Process (General Instructions): These are sample Strategies; which teachers can use to accelerate the attainment of the various course outcomes. 1. In addition to the traditional lecture method, different types of innovative teaching methods may be adopted so that the deliv=rel lessons shall develop students' theoretical and applied mathematical skills. 2. State the need for Mathematics with Engineering Studies and Provide real-life examples 3. Support and guide the students for self-study. 4. You will also be responsible for assigning homework, grading assignments and quizzes, and documenting students' propress 5. Encourage the students for group learning to improve their creative and analytical skills 6. Show short related video lectures in the following ways: • As an introduction to new topics (pre-lecture activity). • As a revision of topics (post-lecture activity). • As a moditional material of challenging topics (pre and post-lecture activity). • As a moditional material of challenging topics (pre and post-lecture activity). • As a moditional material of challenging topics (pre and post-lecture activity). • As a moditional material of challenging topics (pre and post-lecture activity). • As a moditional material of challenging topics (pre and post-lecture activity). • As a moditional material of challenging topics (pre and post-lecture activity). • As a moditional mater	equations, and numerical me	thods enabling them to acquire th	e knowledge of th	lese
Teaching-Learning Process (General Instructions): These are sample Strategies; which teachers can use to accelerate the attainment of the various course outcomes. 1. In addition to the traditional lecture method, different types of innovative teaching methods may be adopted so that the delivered lessons shall develop students' theoretical and applied mathematical skills. 2. State the need for Mathematics with Engineering Studies and Provide real-life examples 3. Support and guide the students for self-study. 4. You will also be responsible for assigning homework, grading assignments and quizzes, and documenting students' progress 5. Encourage the students for group learning to improve their creative and analytical skills 6. Show short related video lectures in the following ways: • As an introduction to new topics (pre-lecture activity). • As a revision of topics (post-lecture activity). • As a notificinal material of challenging topics (pre and post-lecture activity). • As a moditional material of challenging topics (pre and post-lecture activity). • As a model solution of some exercises (post-lecture activity) • As a model solution of double and triple integrals, evaluation of double integrals by change of order of integration, changing into polar coordinates. Applications to find Area and Volume by a double integral. Problems. Beta and Gamma functions: Definitions, properties, the relation between Beta and Gamma functions. Problems. <	mathematical tools.			
These are sample Strategies; which teachers can use to accelerate the attainment of the various course outcomes. 1. In addition to the traditional lecture method, different types of innovative teaching methods may be adopted so that the delivered lessons shall develop students' theoretical and applied mathematical skills. 2. State the need for Mathematics with Engineering Studies and Provide real-life examples 3. Support and guide the students for self-study. 4. You will also be responsible for assigning homework, grading assignments and quizzes, and documenting students' progress 5. Encourage the students for group learning to improve their creative and analytical skills 6. Show short related video lectures in the following ways: • As an introduction to new topics (pre-lecture activity). • As a nevision of topics (post-lecture activity). • As an additional material of challenging topics (pre and post-lecture activity). • As a model solution of some exercises (post-lecture activity) • As a model solution of some exercises (post-lecture activity) • As a model solution of double and triple integrals, evaluation of double integrals by change of order of integratis: Evaluation of double and triple integrals, evaluations to find Area and Volume by a double integral. Problems. Beta and Gamma functions: Definitions, properties, the relation between Beta and Gamma functions. Problems. Self-Study: Centre of gravity. Teaching-Learning Process Chalk and talk method / PowerPoin	Teaching-Learning Process (Gener	ral Instructions):		
outcomes. 1. In addition to the traditional lecture method, different types of innovative teaching methods may be adopted so that the delivered lessons shall develop students' theoretical and applied mathematical skills. 2. State the need for Mathematics with Engineering Studies and Provide real-life examples 3. Support and guide the students for self-study. 4. You will also be responsible for assigning homework, grading assignments and quizzes, and documenting students' progress 5. Encourage the students for group learning to improve their creative and analytical skills 6. Show short related video lectures in the following ways: As an introduction to new topics (pre-lecture activity). As a revision of topics (post-lecture activity). As an additional examples (post-lecture activity). As an additional material of challenging topics (pre and post-lecture activity). As a model solution of some exercises (post-lecture activity). As a model solution of double and triple integrals, evaluation of double integrals by change of order of integratis: Evaluation of double and triple integrals, evaluation of double integrals by change of order of gravity. Beta and Gamma functions: Definitions, properties, the relation between Beta and Gamma functions. Problems. Self-Study: Centre of gravity. Teaching-Learning Process Chalk and talk method / PowerPoint Presentation Module-2: Vector Calculus Vector Differentiation: Scalar and vector fields. Gradient, directional derivative, curl and divergence - physical interpretation, solenoidal and irrotational vector fields. Problems. Vector Integration: Line integrals, Surface integrals. Applications to work done by a force and flux. Statement of Green's theorem and Stoke's theorem. Problems.<!--</td--><td>These are sample Strategies; which t</td><td>eachers can use to accelerate the a</td><td>attainment of the</td><td>various course</td>	These are sample Strategies; which t	eachers can use to accelerate the a	attainment of the	various course
 In addition to the traditional lecture method, different types of innovative teaching methods may be adopted so that the delivered lessons shall develop students' theoretical and applied mathematical skills. State the need for Mathematics with Engineering Studies and Provide real-life examples Support and guide the students for self-study. You will also be responsible for assigning homework, grading assignments and quizzes, and documenting students' progress Encourage the students for group learning to improve their creative and analytical skills Show short related video lectures in the following ways: As an introduction to new topics (pre-lecture activity). As a revision of topics (post-lecture activity). As an additional material of challenging topics (pre and post-lecture activity). As a model solution of some exercises (post-lecture activity). As a model solution of soure exercises (post-lecture activity). As a model solution of soure exercises (post-lecture activity). As a model solution of soure exercises (post-lecture activity). As a model solution of soure exercises (post-lecture activity). Multiple Integrals: Evaluation of double and triple integrals, evaluation of double integrals by change of order of integration, changing into polar coordinates. Applications to find Area and Volume by a double integral. Problems. Beta and Gamma functions: Definitions, properties, the relation between Beta and Gamma functions. Problems. Self-Study: Centre of gravity. Vector Differentiation: Scalar and vector fields. Gradient, directional derivative, curl and divergence - physical interpretation, solenoidal and irrotational vector fields. Problems. Vector Integration: Line integra	outcomes.			
 be adopted so that the delivered lessons shall develop students' theoretical and applied mathematical skills. State the need for Mathematics with Engineering Studies and Provide real-life examples Support and guide the students for self-study. You will also be responsible for assigning homework, grading assignments and quizzes, and documenting students' progress Encourage the students for group learning to improve their creative and analytical skills Show short related video lectures in the following ways: As an introduction to new topics (pre-lecture activity). As a revision of topics (post-lecture activity). As an additional examples (post-lecture activity). As an additional material of challenging topics (pre and post-lecture activity). As a model solution of soure exercises (post-lecture activity). As a model solution of double and triple integrals, evaluation of double integrals by change of order of integration, changing into polar coordinates. Applications to find Area and Volume by a double integral. Problems. Beta and Gamma functions: Definitions, properties, the relation between Beta and Gamma functions. Problems. Self-Study: Centre of gravity. Teaching-Learning Process Chalk and talk method / PowerPoint Presentation Vector Differentiation: Scalar and vector fields. Gradient, directional derivative, curl and divergence - physical interpretation, solenoidal and irrotational vector fields. Problems. Vector Integration: Line integrals, Surface integrals. Applications to work done by a force and flux. Statement of Green's theorem and Stoke's theorem. Problems.	1. In addition to the traditional lea	cture method, different types of in	novative teaching	methods may
 mathematical skills. 2. State the need for Mathematics with Engineering Studies and Provide real-life examples 3. Support and guide the students for self-study. 4. You will also be responsible for assigning homework, grading assignments and quizzes, and documenting students' progress 5. Encourage the students for group learning to improve their creative and analytical skills 6. Show short related video lectures in the following ways: As an introduction to new topics (pre-lecture activity). As a revision of topics (post-lecture activity). As an additional examples (post-lecture activity). As an additional material of challenging topics (pre and post-lecture activity). As a model solution of some exercises (post-lecture activity). As a model solution of double and triple integrals, evaluation of double integrals by change of order of integration, changing into polar coordinates. Applications to find Area and Volume by a double integral. Problems. Beta and Gamma functions: Definitions, properties, the relation between Beta and Gamma functions. Problems. Self-Study: Centre of gravity. Teaching-Learning Process Chalk and talk method / PowerPoint Presentation Module-2: Vector Calculus Vector Differentiation: Scalar and vector fields. Gradient, directional derivative, curl and divergence - physical interpretation, solenoidal and irrotational vector fields. Problems. Vector Integration: Line integrals, Surface integrals. Applications to work done by a force and flux. Statement of Green's theorem and Stoke's theorem. Problems.	be adopted so that the delivered	d lessons shall develop students' t	heoretical and ap	plied
 2. State the need for Mathematics with Engineering Studies and Provide real-life examples 3. Support and guide the students for self-study. 4. You will also be responsible for assigning homework, grading assignments and quizzes, and documenting students' progress 5. Encourage the students for group learning to improve their creative and analytical skills 6. Show short related video lectures in the following ways: As an introduction to new topics (pre-lecture activity). As a nevision of topics (post-lecture activity). As an additional examples (post-lecture activity). As an additional material of challenging topics (pre and post-lecture activity). As a model solution of some exercises (post-lecture activity). As an additional material of challenging topics (pre and post-lecture activity). As a model solution of some exercises (post-lecture activity). As a model solution of double and triple integrals, evaluation of double integrals by change of order of integration, changing into polar coordinates. Applications to find Area and Volume by a double integral. Problems. Beta and Gamma functions: Definitions, properties, the relation between Beta and Gamma functions. Problems. Self-Study: Centre of gravity. Teaching-Learning Process Chalk and talk method / PowerPoint Presentation Vector Differentiation: Scalar and vector fields. Gradient, directional derivative, curl and divergence - physical interpretation, solenoidal and irrotational vector fields. Problems. Vector Integration: Line integrals, Surface integrals. Applications to work done by a force and flux. Statement of Green's theorem and Stoke's theorem. Problems. 	mathematical skills.			
 3. Support and guide the students for self-study. 4. You will also be responsible for assigning homework, grading assignments and quizzes, and documenting students' progress 5. Encourage the students for group learning to improve their creative and analytical skills 6. Show short related video lectures in the following ways: As an introduction to new topics (pre-lecture activity). As a revision of topics (post-lecture activity). As an additional examples (post-lecture activity). As an additional examples (post-lecture activity). As an additional material of challenging topics (pre and post-lecture activity). As a model solution of some exercises (post-lecture activity) As a model solution of some exercises (post-lecture activity) As a model solution of double and triple integrals, evaluation of double integrals by change of order of integration, changing into polar coordinates. Applications to find Area and Volume by a double integral. Problems. Beta and Gamma functions: Definitions, properties, the relation between Beta and Gamma functions. Problems. Self-Study: Centre of gravity. Teaching-Learning Process Chalk and talk method / PowerPoint Presentation Wodule-2: Vector Calculus Vector Differentiation: Scalar and vector fields. Gradient, directional derivative, curl and divergence - physical interpretation, solenoidal and irrotational vector fields. Problems. Vector Integration: Line integrals, Surface integrals. Applications to work done by a force and flux. Statement of Green's theorem and Stoke's theorem. Problems. 	2. State the need for Mathematics	with Engineering Studies and Pro	ovide real-life exa	mples
 4. You will also be responsible for assigning homework, grading assignments and quizzes, and documenting students' progress 5. Encourage the students for group learning to improve their creative and analytical skills 6. Show short related video lectures in the following ways: As an introduction to new topics (pre-lecture activity). As a revision of topics (post-lecture activity). As an additional examples (post-lecture activity). As an additional examples (post-lecture activity). As an additional material of challenging topics (pre and post-lecture activity). As a model solution of some exercises (post-lecture activity) As a model solution of some exercises (post-lecture activity) Matiple Integrals: Evaluation of double and triple integrals, evaluation of double integrals by change of order of integration, changing into polar coordinates. Applications to find Area and Volume by a double integral. Problems. Beta and Gamma functions: Definitions, properties, the relation between Beta and Gamma functions. Problems. Self-Study: Centre of gravity. Teaching-Learning Process Chalk and talk method / PowerPoint Presentation Wodule-2: Vector Calculus Vector Differentiation: Scalar and vector fields. Gradient, directional derivative, curl and divergence - physical interpretation, solenoidal and irrotational vector fields. Problems. Vector Integration: Line integrals, Surface integrals. Applications to work done by a force and flux. Statement of Green's theorem and Stoke's theorem. Problems. 	3. Support and guide the students	for self-study.		
documenting students' progress 5. Encourage the students for group learning to improve their creative and analytical skills 6. Show short related video lectures in the following ways: ● As an introduction to new topics (pre-lecture activity). ● As a revision of topics (post-lecture activity). ● As a additional examples (post-lecture activity). ● As an additional material of challenging topics (pre and post-lecture activity). ● As a model solution of some exercises (post-lecture activity) ● As a model solution of some exercises (post-lecture activity) ● As a model solution of double and triple integrals, evaluation of double integrals by change of order of integration, changing into polar coordinates. Applications to find Area and Volume by a double integral. Problems. Beta and Gamma functions: Definitions, properties, the relation between Beta and Gamma functions. Problems. Self-Study: Centre of gravity. Teaching-Learning Process Chalk and talk method / PowerPoint Presentation Vector Differentiation: Scalar and vector fields. Gradient, directional derivative, curl and divergence - physical interpretation, solenoidal and irrotational vector fields. Problems. Vector Integration: Line integrals, Surface integrals. Applications to work done by a force and flux. Statement of Green's theorem and Stoke's theorem. Problems.	4. You will also be responsible for	assigning homework, grading ass	ignments and qui	zzes, and
 5. Encourage the students for group learning to improve their creative and analytical skills 6. Show short related video lectures in the following ways: As an introduction to new topics (pre-lecture activity). As a revision of topics (post-lecture activity). As a revision of topics (post-lecture activity). As an additional material of challenging topics (pre and post-lecture activity). As a model solution of some exercises (post-lecture activity) As a model solution of some exercises (post-lecture activity) As a model solution of some exercises (post-lecture activity) Multiple Integrals: Evaluation of double and triple integrals, evaluation of double integrals by change of order of integration, changing into polar coordinates. Applications to find Area and Volume by a double integral. Problems. Beta and Gamma functions: Definitions, properties, the relation between Beta and Gamma functions. Problems. Self-Study: Centre of gravity. Teaching-Learning Process Chalk and talk method / PowerPoint Presentation Vector Differentiation: Scalar and vector fields. Gradient, directional derivative, curl and divergence - physical interpretation, solenoidal and irrotational vector fields. Problems. Vector Integration: Line integrals, Surface integrals. Applications to work done by a force and flux. Statement of Green's theorem and Stoke's theorem. Problems.	documenting students' progres	S		
 6. Show short related video lectures in the following ways: As an introduction to new topics (pre-lecture activity). As a revision of topics (post-lecture activity). As an additional examples (post-lecture activity). As an additional material of challenging topics (pre and post-lecture activity). As an additional material of challenging topics (pre and post-lecture activity). As a model solution of some exercises (post-lecture activity) As a model solution of some exercises (post-lecture activity) As a model solution of some exercises (post-lecture activity) As a model solution of some exercises (post-lecture activity) Multiple Integrals: Evaluation of double and triple integrals, evaluation of double integrals by change of order of integration, changing into polar coordinates. Applications to find Area and Volume by a double integral. Problems. Beta and Gamma functions: Definitions, properties, the relation between Beta and Gamma functions. Problems. Self-Study: Centre of gravity. Teaching-Learning Process Chalk and talk method / PowerPoint Presentation Module-2: Vector Calculus Vector Differentiation: Scalar and vector fields. Gradient, directional derivative, curl and divergence - physical interpretation, solenoidal and irrotational vector fields. Problems. Vector Integration: Line integrals, Surface integrals. Applications to work done by a force and flux. Statement of Green's theorem and Stoke's theorem. Problems.	5. Encourage the students for grou	up learning to improve their creat	ive and analytical	skills
 As an introduction to new topics (pre-lecture activity). As a revision of topics (post-lecture activity). As additional examples (post-lecture activity). As an additional material of challenging topics (pre and post-lecture activity). As an additional material of challenging topics (pre and post-lecture activity). As a model solution of some exercises (post-lecture activity) As a model solution of some exercises (post-lecture activity) Module-1: Integral Calculus Multiple Integrals: Evaluation of double and triple integrals, evaluation of double integrals by change of order of integration, changing into polar coordinates. Applications to find Area and Volume by a double integral. Problems. Beta and Gamma functions: Definitions, properties, the relation between Beta and Gamma functions. Problems. Self-Study: Centre of gravity. Teaching-Learning Process Chalk and talk method / PowerPoint Presentation Module-2: Vector Calculus Vector Differentiation: Scalar and vector fields. Gradient, directional derivative, curl and divergence - physical interpretation, solenoidal and irrotational vector fields. Problems. Vector Integration: Line integrals, Surface integrals. Applications to work done by a force and flux. Statement of Green's theorem and Stoke's theorem. Problems. 	6. Show short related video lectur	es in the following ways:		
 As a revision of topics (post-lecture activity). As additional examples (post-lecture activity). As an additional material of challenging topics (pre and post-lecture activity). As a model solution of some exercises (post-lecture activity) As a model solution of some exercises (post-lecture activity) Module-1: Integral Calculus Multiple Integrals: Evaluation of double and triple integrals, evaluation of double integrals by change of order of integration, changing into polar coordinates. Applications to find Area and Volume by a double integral. Problems. Beta and Gamma functions: Definitions, properties, the relation between Beta and Gamma functions. Problems. Self-Study: Centre of gravity. Teaching-Learning Process Chalk and talk method / PowerPoint Presentation Module-2: Vector Calculus Vector Differentiation: Scalar and vector fields. Gradient, directional derivative, curl and divergence - physical interpretation, solenoidal and irrotational vector fields. Problems. Vector Integration: Line integrals, Surface integrals. Applications to work done by a force and flux. Statement of Green's theorem and Stoke's theorem. Problems. 	As an introduction to new top	oics (pre-lecture activity).		
 As additional examples (post-lecture activity). As an additional material of challenging topics (pre and post-lecture activity). As a model solution of some exercises (post-lecture activity) As a model solution of some exercises (post-lecture activity) Multiple Integrals: Evaluation of double and triple integrals, evaluation of double integrals by change of order of integration, changing into polar coordinates. Applications to find Area and Volume by a double integral. Problems. Beta and Gamma functions: Definitions, properties, the relation between Beta and Gamma functions. Problems. Self-Study: Centre of gravity. Teaching-Learning Process Chalk and talk method / PowerPoint Presentation Wodule-2: Vector Calculus Vector Differentiation: Scalar and vector fields. Gradient, directional derivative, curl and divergence - physical interpretation, solenoidal and irrotational vector fields. Problems. Vector Integration: Line integrals, Surface integrals. Applications to work done by a force and flux. Statement of Green's theorem and Stoke's theorem. Problems. 	• As a revision of topics (post-l	ecture activity).		
 As an additional material of challenging topics (pre and post-lecture activity). As a model solution of some exercises (post-lecture activity) Module-1: Integral Calculus Multiple Integrals: Evaluation of double and triple integrals, evaluation of double integrals by change of order of integration, changing into polar coordinates. Applications to find Area and Volume by a double integral. Problems. Beta and Gamma functions: Definitions, properties, the relation between Beta and Gamma functions. Problems. Self-Study: Centre of gravity. Teaching-Learning Process Chalk and talk method / PowerPoint Presentation Module-2: Vector Calculus Vector Differentiation: Scalar and vector fields. Gradient, directional derivative, curl and divergence - physical interpretation, solenoidal and irrotational vector fields. Problems. Vector Integration: Line integrals, Surface integrals. Applications to work done by a force and flux. Statement of Green's theorem and Stoke's theorem. Problems. 	• As additional examples (post	-lecture activity).		
 ● As a model solution of some exercises (post-lecture activity) Module-1: Integral Calculus Multiple Integrals: Evaluation of double and triple integrals, evaluation of double integrals by change of order of integration, changing into polar coordinates. Applications to find Area and Volume by a double integral. Problems. Beta and Gamma functions: Definitions, properties, the relation between Beta and Gamma functions. Problems. Self-Study: Centre of gravity. Teaching-Learning Process Vector Differentiation: Scalar and vector fields. Gradient, directional derivative, curl and divergence - physical interpretation, solenoidal and irrotational vector fields. Problems. Vector Integration: Line integrals, Surface integrals. Applications to work done by a force and flux. Statement of Green's theorem and Stoke's theorem. Problems. 	• As an additional material of c	hallenging topics (pre and post-le	cture activity).	
Module-1: Integral Calculus Multiple Integrals: Evaluation of double and triple integrals, evaluation of double integrals by change of order of integration, changing into polar coordinates. Applications to find Area and Volume by a double integral. Problems. Beta and Gamma functions: Definitions, properties, the relation between Beta and Gamma functions. Problems. Self-Study: Centre of gravity. Teaching-Learning Process Chalk and talk method / PowerPoint Presentation Vector Differentiation: Scalar and vector fields. Gradient, directional derivative, curl and divergence - physical interpretation, solenoidal and irrotational vector fields. Problems. Vector Integration: Line integrals, Surface integrals. Applications to work done by a force and flux. Statement of Green's theorem and Stoke's theorem. Problems.	• As a model solution of some e	exercises (post-lecture activity)		
Multiple Integrals: Evaluation of double and triple integrals, evaluation of double integrals by change of order of integration, changing into polar coordinates. Applications to find Area and Volume by a double integral. Problems. Beta and Gamma functions: Definitions, properties, the relation between Beta and Gamma functions. Problems. Self-Study: Centre of gravity. Teaching-Learning Process Chalk and talk method / PowerPoint Presentation Vector Differentiation: Scalar and vector fields. Gradient, directional derivative, curl and divergence - physical interpretation, solenoidal and irrotational vector fields. Problems. Vector Integration: Line integrals, Surface integrals. Applications to work done by a force and flux. Statement of Green's theorem and Stoke's theorem. Problems.		Module-1: Integral Calculus		
of order of integration, changing into polar coordinates. Applications to find Area and Volume by a double integral. Problems. Beta and Gamma functions: Definitions, properties, the relation between Beta and Gamma functions. Problems. Self-Study: Centre of gravity. Teaching-Learning Process Chalk and talk method / PowerPoint Presentation Module-2: Vector Calculus Vector Differentiation: Scalar and vector fields. Gradient, directional derivative, curl and divergence - physical interpretation, solenoidal and irrotational vector fields. Problems. Vector Integration: Line integrals, Surface integrals. Applications to work done by a force and flux. Statement of Green's theorem and Stoke's theorem. Problems.	Multiple Integrals: Evaluation of do	buble and triple integrals, evaluation	ion of double inte	grals by change
adduble Integral. Problems. Beta and Gamma functions: Definitions, properties, the relation between Beta and Gamma functions. Problems. Self-Study: Centre of gravity. Teaching-Learning Process Chalk and talk method / PowerPoint Presentation Module-2: Vector Calculus Vector Differentiation: Scalar and vector fields. Gradient, directional derivative, curl and divergence - physical interpretation, solenoidal and irrotational vector fields. Problems. Vector Integration: Line integrals, Surface integrals. Applications to work done by a force and flux. Statement of Green's theorem and Stoke's theorem. Problems.	of order of integration, changing in	to polar coordinates. Application	s to find Area ar	id Volume by a
Beta and Gamma functions: Definitions, properties, the relation between Beta and Gamma functions. Problems. Self-Study: Centre of gravity. Teaching-Learning Process Chalk and talk method / PowerPoint Presentation Module-2: Vector Calculus Vector Differentiation: Scalar and vector fields. Gradient, directional derivative, curl and divergence - physical interpretation, solenoidal and irrotational vector fields. Problems. Vector Integration: Line integrals, Surface integrals. Applications to work done by a force and flux. Statement of Green's theorem and Stoke's theorem. Problems.	double integral. Problems.			
Problems. Self-Study: Centre of gravity. Teaching-Learning Process Chalk and talk method / PowerPoint Presentation Module-2: Vector Calculus Module-2: Vector Calculus Vector Differentiation: Scalar and vector fields. Gradient, directional derivative, curl and divergence - physical interpretation, solenoidal and irrotational vector fields. Problems. Vector Integration: Line integrals, Surface integrals. Applications to work done by a force and flux. Statement of Green's theorem and Stoke's theorem. Problems.	Beta and Gamma functions: Defin	itions, properties, the relation bet	ween Beta and Ga	imma functions.
Self-Study: Centre of gravity. Teaching-Learning Process Chalk and talk method / PowerPoint Presentation Module-2: Vector Calculus Vector Differentiation: Scalar and vector fields. Gradient, directional derivative, curl and divergence - physical interpretation, solenoidal and irrotational vector fields. Problems. Vector Integration: Line integrals, Surface integrals. Applications to work done by a force and flux. Statement of Green's theorem and Stoke's theorem. Problems.	Solf Study: Contro of gravity			
Module-2: Vector Calculus Vector Differentiation: Scalar and vector fields. Gradient, directional derivative, curl and divergence - physical interpretation, solenoidal and irrotational vector fields. Problems. Vector Integration: Line integrals, Surface integrals. Applications to work done by a force and flux. Statement of Green's theorem and Stoke's theorem. Problems.	Teaching Learning Process	halls and talls mathed / DawarDair	t Dragontation	
 Vector Differentiation: Scalar and vector fields. Gradient, directional derivative, curl and divergence - physical interpretation, solenoidal and irrotational vector fields. Problems. Vector Integration: Line integrals, Surface integrals. Applications to work done by a force and flux. Statement of Green's theorem and Stoke's theorem. Problems. 	reaching-Learning Process	Modulo 2: Voctor Calculus	It Presentation	
 physical interpretation, solenoidal and irrotational vector fields. Problems. Vector Integration: Line integrals, Surface integrals. Applications to work done by a force and flux. Statement of Green's theorem and Stoke's theorem. Problems. 	Vector Differentiation, Scalar and	Module-2: Vector Calculus	dominating and	and divergence
Vector Integration: Line integrals, Surface integrals. Applications to work done by a force and flux. Statement of Green's theorem and Stoke's theorem. Problems.	physical interpretation, solonoidal a	vector fields. Gradient, un ectional	l derivative, curra	ind divergence -
Statement of Green's theorem and Stoke's theorem. Problems.	Vector Integration: Line integrals Surface integrals Applications to work done by a force and flux			
statement of dreen's theorem and stoke's theorem. I roblems.	Statement of Green's theorem and Stoke's theorem. Problems			
Self-Study : Volume integral and Gauss divergence theorem.	Statement of Green's theorem and Stoke's theorem. Froblenis.			
Teaching-Learning Process Chalk and talk method / Power Point Presentation	Teaching-Learning Process	halk and talk method / Power Poi	nt Presentation	
	Module-3	: Partial Differential Equations	(PDE's)	
	Module-3: Partial Differential Equations (PDE's)			

Formation of PDE's by elimination of arbitrary constants and functions. Solution of non-homogeneous PDE by direct integration. Homogeneous PDEs involving derivative with respect to one independent variable only. Solution of Lagrange's linear PDE. Derivation of one-dimensional heat equation and wave equation.

Self-Study: Solution of one-dimensional heat equation and wave equation by the method of separation of variables.

5 5	Module-4: Numerical methods -1
Teaching-Learning Process	Chalk and talk method / Power Point Presentation

Solution of polynomial and transcendental equations: Regula-Falsi and Newton-Raphson methods (only formulae). Problems.

Finite differences, Interpolation using Newton's forward and backward difference formulae, Newton's divided difference formula and Lagrange's interpolation formula (All formulae without proof). Problems. Numerical integration: Simpson's (1/3)rd and (3/8)th rules(without proof). Problems.

Self-Study: Bisection method, Lagrange's inverse Interpolation, Weddle's rule

Teaching-Learning Process	Chalk and talk method / PowerPoint Presentation
	Module-5: Numerical methods -2

Numerical Solution of Ordinary Differential Equations (ODE's):

Numerical solution of ordinary differential equations of first order and first degree: Taylor's series method, Modified Euler's method, Runge-Kutta method of fourth-order, Milne's predictor-corrector formula (No derivations of formulae). Problems.

Self-Study: Adam-Bashforth method.

Teaching-Learning Process	Chalk and talk method/PowerPoint Presentation
---------------------------	---

Course outcomes (Course Skills Set)

After successfully completing the course, the student will be able to understand the topics:

- Apply the concept of change of order of integration and change of variables to evaluate multiple integrals and their usage in computing the area and volume.
- Illustrate the applications of multivariate calculus to understand the solenoidal and irrotational vectors and also exhibit the interdependence of line, surface, and volume integrals.
- Formulate physical problems to partial differential equations and to obtain solutions for standard practical PDE's.
- Apply the knowledge of numerical methods in modeling various physical and engineering phenomena.
- Solve first-order ordinary differential equations arising in engineering problems.

Assessment Details (both CIE and SEE)
Continuous Internal Evaluation(CIE):
Semester End Examination(SEE):
3.
Suggested Learning Resources:
Text Books
1. B.S. Grewal : "Higher Engineering Mathematics", Khanna publishers, 44 th Ed.2018
2. E. Kreyszig : "Advanced Engineering Mathematics", John Wiley & Sons, 10th Ed.(Reprint), 2016.
Reference Books:
1 V Ramana: "Higher Engineering Mathematics" McGraw-Hill Education 11th Ed
 Srimanta Pal & Subodh C. Bhunia: "Engineering Mathematics" Oxford University press, 3rd
Reprint, 2016.
3. N.P Bali and Manish Goyal: "A text book of Engineering Mathematics" Laxmi Publications,
Latest edition
4. C. Ray wyne, Louis C. Barrett: Advanced Engineering Mathematics McGraw – Hill Book Co. Newvork Latest ed
5. Gupta C. B, Sing S.R and Mukesh kumar : "Engineering Mathematics for Semester I and II", Mc-
Graw Hill Education(India) Pvt.Ltd. 2015
6. H.K.Dass and Er. Rajnish Verma: "Higher Engineering Mathematics" S. Chand Publication
(2014). 7. January Standardt, "Calculus" Canada and lighting 7th adition. 4th Decement 2010.
7. James Stewart: Calculus Cengage publications, 7 th edition, 4 th Reprint 2019.
Web links and Video Lectures (e-Resources):
<u>http://.ac.in/courses.php?disciplineID=111</u>
 <u>http://www.class-central.com/subject/math(MOOCs)</u>
http://academicearth.org/

- VTU e-Shikshana Program •
- VTH EDUCAT Drogram

Activity Based Learning (Suggested Activities in Class) / Practical Based learning

- Quizzes
- Assignments
- Seminars